Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 14(1): 1300, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894536

RESUMO

The growth of lithium dendrites in inorganic solid electrolytes is an essential drawback that hinders the development of reliable all-solid-state lithium metal batteries. Generally, ex situ post mortem measurements of battery components show the presence of lithium dendrites at the grain boundaries of the solid electrolyte. However, the role of grain boundaries in the nucleation and dendritic growth of metallic lithium is not yet fully understood. Here, to shed light on these crucial aspects, we report the use of operando Kelvin probe force microscopy measurements to map locally time-dependent electric potential changes in the Li6.25Al0.25La3Zr2O12 garnet-type solid electrolyte. We find that the Galvani potential drops at grain boundaries near the lithium metal electrode during plating as a response to the preferential accumulation of electrons. Time-resolved electrostatic force microscopy measurements and quantitative analyses of lithium metal formed at the grain boundaries under electron beam irradiation support this finding. Based on these results, we propose a mechanistic model to explain the preferential growth of lithium dendrites at grain boundaries and their penetration in inorganic solid electrolytes.

3.
ACS Appl Mater Interfaces ; 12(44): 49335-49345, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33086007

RESUMO

Perfluorocarbon-loaded nanoparticles are powerful theranostic agents, which are used in the therapy of cancer and stroke and as imaging agents for ultrasound and 19F magnetic resonance imaging (MRI). Scaling up the production of perfluorocarbon-loaded nanoparticles is essential for clinical translation. However, it represents a major challenge as perfluorocarbons are hydrophobic and lipophobic. We developed a method for continuous-flow production of perfluorocarbon-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles using a modular microfluidic system, with sufficient yields for clinical use. We combined two slit interdigital micromixers with a sonication flow cell to achieve efficient mixing of three phases: liquid perfluorocarbon, PLGA in organic solvent, and aqueous surfactant solution. The production rate was at least 30 times higher than with the conventional formulation. The characteristics of nanoparticles can be adjusted by changing the flow rates and type of solvent, resulting in a high PFC loading of 20-60 wt % and radii below 200 nm. The nanoparticles are nontoxic, suitable for 19F MRI and ultrasound imaging, and can dissolve oxygen. In vivo 19F MRI with perfluoro-15-crown-5 ether-loaded nanoparticles showed similar biodistribution as nanoparticles made with the conventional method and a fast clearance from the organs. Overall, we developed a continuous, modular method for scaled-up production of perfluorocarbon-loaded nanoparticles that can be potentially adapted for the production of other multiphase systems. Thus, it will facilitate the clinical translation of theranostic agents in the future.


Assuntos
Fluorocarbonos/química , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Células Cultivadas , Humanos , Imageamento por Ressonância Magnética , Técnicas Analíticas Microfluídicas , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície , Nanomedicina Teranóstica
4.
Adv Mater ; 31(2): e1805044, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30411838

RESUMO

The synthesis of hybrid hydrogels by pH-controlled structural transition with exceptional rheological properties as cellular matrix is reported. "Depsi" peptide sequences are grafted onto a polypeptide backbone that undergo a pH-induced intramolecular O-N-acyl migration at physiological conditions affording peptide nanofibers (PNFs) as supramolecular gelators. The polypeptide-PNF hydrogels are mechanically remarkably robust. They reveal exciting thixotropic behavior with immediate in situ recovery after exposure to various high strains over long periods and self-repair of defects by instantaneous reassembly. High cytocompatibility, convenient functionalization by coassembly, and controlled enzymatic degradation but stability in 2D and 3D cell culture as demonstrated by the encapsulation of primary human umbilical vein endothelial cells and neuronal cells open many attractive opportunities for 3D tissue engineering and other biomedical applications.

5.
Small ; 14(27): e1801170, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29847707

RESUMO

Inorganic polyphosphate [polyP] has proven to be a promising physiological biopolymer for potential use in regenerative medicine because of its morphogenetic activity and function as an extracellular energy-donating system. Amorphous Ca2+ -polyP nanoparticles [Ca-polyP-NPs] are characterized by a high zeta potential with -34 mV (at pH 7.4). This should contribute to the stability of suspensions of the spherical nanoparticles (radius 94 nm), but make them less biocompatible. The zeta potential decreases to near zero after exposure of the Ca-polyP-NPs to protein/peptide-containing serum or medium plus serum. Electron microscopy analysis reveals that the particles rapidly change into a coacervate phase. Those mats are amorphous, but less stable than the likewise amorphous Ca-polyP-NPs and are morphogenetically active. Mesenchymal stem cells grown onto the polyP coacervate show enhanced growth/proliferation and become embedded in the coacervate. These results suggest that the Ca-polyP coacervate, formed from Ca-polyP-NPs in the presence of protein, can act as an adaptable framework that mimics a niche and provides metabolic energy in bone/cartilage engineering.


Assuntos
Células-Tronco Mesenquimais/citologia , Nanopartículas/química , Polifosfatos/química , Animais , Humanos , Pirofosfatase Inorgânica/metabolismo , Microscopia Eletrônica , Nanopartículas/ultraestrutura , Medicina Regenerativa
6.
ACS Nano ; 8(8): 8198-207, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25019338

RESUMO

The development of solid materials which are able to upconvert optical radiation into photons of higher energy is attractive for many applications such as photocatalytic cells and photovoltaic devices. However, to fully exploit triplet-triplet annihilation photon energy upconversion (TTA-UC), oxygen protection is imperative because molecular oxygen is an ultimate quencher of the photon upconversion process. So far, reported solid TTA-UC materials have focused mainly on elastomeric matrices with low barrier properties because the TTA-UC efficiency generally drops significantly in glassy and semicrystalline matrices. To overcome this limit, for example, combine effective and sustainable annihilation upconversion with exhaustive oxygen protection of dyes, we prepare a sustainable solid-state-like material based on nanocellulose. Inspired by the structural buildup of leaves in Nature, we compartmentalize the dyes in the liquid core of nanocellulose-based capsules which are then further embedded in a cellulose nanofibers (NFC) matrix. Using pristine cellulose nanofibers, a sustainable and environmentally friendly functional nanomaterial with ultrahigh barrier properties is achieved. Also, an ensemble of sensitizers and emitter compounds are encapsulated, which allow harvesting of the energy of the whole deep-red sunlight region. The films demonstrate excellent lifetime in synthetic air (20.5/79.5, O2/N2)-even after 1 h operation, the intensity of the TTA-UC signal decreased only 7.8% for the film with 8.8 µm thick NFC coating. The lifetime can be further modulated by the thickness of the protective NFC coating. For comparison, the lifetime of TTA-UC in liquids exposed to air is on the level of seconds to minutes due to fast oxygen quenching.


Assuntos
Biomimética/métodos , Transferência de Energia , Nanofibras/química , Fenômenos Ópticos , Oxigênio/química , Papel , Fótons , Celulose/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Molecular , Espectrometria de Fluorescência
7.
Sci Rep ; 4: 5075, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24861542

RESUMO

The polarization of the ferroelectric polymer P(VDF-TrFE) decreases upon prolonged cycling. Understanding of this fatigue behavior is of great technological importance for the implementation of P(VDF-TrFE) in random-access memories. However, the origin of fatigue is still ambiguous. Here we investigate fatigue in thin-film capacitors by systematically varying the frequency and amplitude of the driving waveform. We show that the fatigue is due to delamination of the top electrode. The origin is accumulation of gases, expelled from the capacitor, under the impermeable top electrode. The gases are formed by electron-induced phase decomposition of P(VDF-TrFE), similar as reported for inorganic ferroelectric materials. When the gas barrier is removed and the waveform is adapted, a fatigue-free ferroelectric capacitor based on P(VDF-TrFE) is realized. The capacitor can be cycled for more than 10(8) times, approaching the programming cycle endurance of its inorganic ferroelectric counterparts.

8.
Biomacromolecules ; 15(5): 1852-9, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24716647

RESUMO

Liquid-core capsules of high mechanical stability open up for many solid state-like applications where functionality depending on liquid mobility is vital. Herein, a novel concept for fast and facile improvement of the mechanical properties of walls of liquid-core capsules is reported. By imitating nature's own way of enhancing the mechanical properties in liquid-core capsules, the parenchyma plant cells found in fruits and vegetables, a blend of short cellulose nanofibers (<1 µm, NFC) and nanocrystals (CNC) was exploited in the creation of the capsule walls. The NFC/CNC blend was prepared from a new version of the classical wood pulp hydrolysis. The capsule shell consisted of a covalently (by aromatic diisocyanate) cross-linked NFC/CNC structure at the outer capsule wall and an inner layer dominated by aromatic polyurea. The mechanical properties revealed an effective capsule elastic modulus of 4.8 GPa at 17 wt % NFC/CNC loading, about six times higher compared to a neat aromatic polyurea capsule (0.79 GPa) and 3 orders of magnitude higher than previously reported capsules from regenerated cellulose (0.0074 GPa). The outstanding mechanical properties are ascribed to the dense nanofiber structure, present in the outer part of the capsule wall, that is formed by oriented NFC/CNC of high average aspect ratio (L/d ∼ 70) and held together by both covalent (urethane bonds) and physical bonds (hydrogen bonds).


Assuntos
Cápsulas/química , Cápsulas/síntese química , Celulose/química , Nanofibras/química , Nanopartículas/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
9.
Acta Biomater ; 10(1): 450-62, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23978410

RESUMO

The calcareous spicules from sponges, e.g. from Sycon raphanus, are composed of almost pure calcium carbonate. In order to elucidate the formation of those structural skeletal elements, the function of the enzyme carbonic anhydrase (CA), isolated from this species, during the in vitro calcium carbonate-based spicule formation, was investigated. It is shown that the recombinant sponge CA substantially accelerates calcium carbonate formation in the in vitro diffusion assay. A stoichiometric calculation revealed that the turnover rate of the sponge CA during the calcification process amounts to 25 CO2s(-1) × molecule CA(-1). During this enzymatically driven process, initially pat-like particles are formed that are subsequently transformed to rhomboid/rhombohedroid crystals with a dimension of ~50 µm. The CA-catalyzed particles are smaller than those which are formed in the absence of the enzyme. The Martens hardness of the particles formed is ~4 GPa, a value which had been determined for other biogenic calcites. This conclusion is corroborated by energy-dispersive X-ray spectroscopy, which revealed that the particles synthesized are composed predominantly of the elements calcium, oxygen and carbon. Surprising was the finding, obtained by light and scanning electron microscopy, that the newly formed calcitic crystals associate with the calcareous spicules from S. raphanus in a highly ordered manner; the calcitic crystals almost perfectly arrange in an array orientation along the two opposing planes of the spicules, leaving the other two plane arrays uncovered. It is concluded that the CA is a key enzyme controlling the calcium carbonate biomineralization process, which directs the newly formed particles to existing calcareous spicular structures. It is expected that with the given tools new bioinspired materials can be fabricated.


Assuntos
Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Anidrases Carbônicas/metabolismo , Poríferos/enzimologia , Sequência de Aminoácidos , Animais , Anidrases Carbônicas/química , Cristalização , Elementos Químicos , Minerais/química , Dados de Sequência Molecular , Poríferos/anatomia & histologia , Poríferos/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Nanomedicine ; 10(1): 131-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23891986

RESUMO

The enzyme-triggered release of the antimicrobial agent octenidine out of poly(l-lactide)-based nanoparticles (PLLA-NPs) and their in vitro antibacterial activities in the presence of gram-positive and gram-negative bacteria are presented. The formation of the nanoparticles was achieved using a combination of the solvent evaporation and the miniemulsion approach. For the stabilization of the polymeric nanoparticles, non-ionic polymers (polyvinylalcohol [PVA], hydroxyethyl starch [HES], human serum albumin [HSA]) were successfully used for enzymatic degradation; ionic surfactants such as sodium dodecyl sulfate and cetyltrimethylammonium chloride inhibited the enzymatic degradation. The change in pH, size, size distribution and morphology during the degradation process of PLLA-NPs and the release of the antimicrobial agent was studied. The influence of the different amounts of octenidine and of the different stabilizers on the NPs' stability, size, size distribution, morphology, zeta potential and on the surface group's density is discussed. Fluorescently labeled HES-stabilized PLLA-NPs are immobilized by colloidal electrospinning. The observed data from HPLC measurements show that octenidine is released out of PLLA-NPs which are stabilized with PVA, HES or HSA. In bacteria tests the PLLA nanoparticles showed a greater ability to inhibit the growth of Staphylococcus aureus compared to Escherichia coli. FROM THE CLINICAL EDITOR: This article discusses the enzyme-triggered release and antibacterial effects of octenidine from poly(l-lactide)-based nanoparticles demonstrating the viability of this approach for potential future antibacterial therapy.


Assuntos
Nanopartículas/química , Poliésteres/química , Piridinas/química , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Humanos , Iminas , Tamanho da Partícula , Polímeros/química , Piridinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos
11.
Angew Chem Int Ed Engl ; 52(38): 10107-11, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-23881773

RESUMO

From particles to fibers: Nanofibers with different morphologies and periodicities can be fabricated by supraparticular assembly of magnetic spherical nanoparticles. A linear sintering process is used to merge the assembled colloids together. The structure of the obtained fibers is controlled by the process parameters and the morphology of the spherical colloidal building blocks.


Assuntos
Coloides/química , Nanopartículas/química , Nanofibras , Nanotubos
12.
ACS Appl Mater Interfaces ; 4(11): 6338-45, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23092359

RESUMO

We present herein a new concept for the preparation of nanofibrous metal oxides based on the simultaneous electrospinning of metal oxide precursors and silica nanoparticles. Precursor fibers are prepared by electrospinning silica nanoparticles (20 nm in diameter) dispersed in an aqueous solution of poly(acrylic acid) and metal salts. Upon calcination in air, the poly(acrylic acid) matrix is removed, the silica nanoparticles are cemented, and nanocrystalline metal oxide particles of 4-14 nm are nucleated at the surface of the silica nanoparticles. The obtained continuous silica fibers act as a structural framework for metal oxide nanoparticles and show improved mechanical integrity compared to the neat metal oxide fibers. The hierarchically nanostructured materials are promising for catalysis applications, as demonstrated by the successful degradation of a model dye in the presence of the fibers.


Assuntos
Cristalização/métodos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Dióxido de Silício/química , Catálise , Coloides/química , Eletroquímica/métodos , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Óxidos/química , Tamanho da Partícula , Rotação , Propriedades de Superfície
13.
Chembiochem ; 12(15): 2316-24, 2011 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-21858907

RESUMO

Syneresis is a process observed during the maturation/aging of silica gels obtained by sol-gel synthesis that results in shrinkage and expulsion of water due to a rearrangement and increase in the number of bridging siloxane bonds. Here we describe how the process of biosilica deposition during spicule ("biosilica" skeleton of the siliceous sponges) formation involves a phase of syneresis that occurs after the enzyme-mediated polycondensation reaction. Primmorphs from the demosponge Suberites domuncula were used to study syneresis and the inhibition of this mechanism. We showed by scanning electron microscopy that spicules added to primmorphs that have been incubated with manganese sulfate fuse together through the deposition of silica spheres and bridges. Energy-dispersive X-ray mapping of the newly formed deposits showed high silicon and oxygen content. These biosilica deposits contain a comparably higher percentage of water than mature/aged spicules. Quantitative real-time polymerase chain reaction analyses revealed that the addition of silicate to primmorph cultures resulted in a marked upregulation of the expression of the aquaporin gene and of the genes encoding the silica anabolic enzyme silicatein-α and the silica catabolic enzyme silicase. On the other hand, addition of manganese sulfate, either alone or together with silicate, caused a strong reduction in the level of aquaporin transcripts, although this metal ion did not essentially affect the silicate-induced increase in silicatein-α and silicase gene expression. We conclude that the secondary silica deposits formed on spicules under physiological conditions in the presence of silicate fuse together and subsequently undergo syneresis, which is facilitated by the removal of water through aquaporin channels. In growing spicules, these processes of biosilica formation and syneresis in the lamellar monolithic structures precede the final step of "biosintering" during which the massive biosilica rods of the spicules are formed.


Assuntos
Dióxido de Silício/metabolismo , Suberites/metabolismo , Suberites/ultraestrutura , Animais , Aquaporinas/genética , Catepsinas/genética , Regulação da Expressão Gênica , Compostos de Manganês/metabolismo , Dióxido de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier , Suberites/química , Suberites/genética , Sulfatos/metabolismo , Termogravimetria , Água/química
14.
Acta Biomater ; 7(6): 2661-71, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21397057

RESUMO

Inorganic polymeric phosphate is a physiological polymer that accumulates in bone cells. In the present study osteoblast-like SaOS-2 cells were exposed to this polymer, complexed in a 2:1 stoichiometric ratio with Ca(2+), polyP (Ca(2+) salt). At a concentration of 100 µM, polyP (Ca(2+) salt) caused a strong increase in the activity of the alkaline phosphatase and also an induction of the steady-state expression of the gene encoding this enzyme. Comparative experiments showed that polyP (Ca(2+) salt) can efficiently replace ß-glycerophosphate in the in vitro hydroxyapatite (HA) biomineralization assay. In the presence of polyP (Ca(2+) salt) the cells extensively form HA crystallites, which remain intimately associated with or covered by the plasma membrane. Only the tips of the crystallites are directly exposed to the extracellular space. Element mapping by scanning electron microscopy/energy-dispersive X-ray spectroscopy coupled to a silicon drift detector supported the finding that organic material was dispersed within the crystallites. Finally, polyP (Ca(2+) salt) was found to cause an increase in the intracellular Ca(2+) level, while polyP, as well as inorganic phosphate (P(i)) or Ca(2+) alone, had no effect at the concentrations used. These findings are compatible with the assumption that polyP (Ca(2+) salt) is locally, on the surface of the SaOS-2 cells, hydrolyzed to P(i) and Ca(2+). We conclude that the inorganic polymer polyP (Ca(2+) salt) in concert with a second inorganic, and physiologically occurring, polymer, biosilica, activates osteoblasts and impairs the maturation of osteoclasts.


Assuntos
Fosfatase Alcalina/biossíntese , Cálcio/metabolismo , Osteoblastos/efeitos dos fármacos , Fosfatos/farmacologia , Linhagem Celular , Indução Enzimática , Humanos , Imuno-Histoquímica , Microscopia Eletrônica de Varredura , Osteoblastos/enzimologia , Osteoblastos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
15.
Calcif Tissue Int ; 87(6): 513-24, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20725824

RESUMO

Biosilica is a natural polymer, synthesized by the poriferan enzyme silicatein from monomeric silicate substrates. Biosilica stimulates mineralizing activity and gene expression of SaOS-2 cells. To study its effect on the formation of hydroxyapatite (HA), SaOS-2 cells were grown on different silicatein/biosilica-modified substrates (bone slices, Ca-P-coated coverslips, glass coverslips). Growth on these substrates induced the formation of HA nodules, organized in longitudinal arrays or spherical spots. Nodules of sizes above 1 µm were composed of irregularly arranged HA prism-like nanorods, formed by aggregates of three to eight SaOS-2 cells. Moreover, growth on silicatein/biosilica-modified substrates elicited increased [(3)H]dT incorporation into DNA, indicative of enhanced cell proliferation. Consequently, an in vitro-based bioassay was established to determine the ratio between [(3)H]dT incorporation and HA formation. This ratio was significantly higher for cells that grew on silicatein/biosilica-modified substrates than for cells on Ca-P-coated coverslips or plain glass slips. Hence, we propose that this ratio of in vitro-determined parameters reflects the osteogenic effect of different substrates on bone-forming cells. Finally, qRT-PCR analyses demonstrated that growth of SaOS-2 cells on a silicatein/biosilica matrix upregulated BMP2 (bone morphogenetic protein 2, inducer of bone formation) expression. In contrast, TRAP (tartrate-resistant acid phosphatase, modulator of bone resorption) expression remained unaffected. We conclude that biosilica shows pronounced osteogenicity in vitro, qualifying this material for studies of bone replacement also in vivo.


Assuntos
Durapatita/metabolismo , Osteoblastos/metabolismo , Osteogênese , Dióxido de Silício/farmacologia , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Humanos , Osteoblastos/efeitos dos fármacos , Dióxido de Silício/metabolismo
16.
ACS Appl Mater Interfaces ; 2(1): 279-87, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20356246

RESUMO

An alternative approach for the creation of proton conducting platforms is presented. The methodology is based on the so-called "pore-filling concept", which relies on the filling of porous matrices with polyelectrolytes to obtain proton conducting platforms with high dimensional stability. Polymer-silicon composite membranes, with well-defined polyelectrolyte microdomains oriented normal to the plane of the membrane, were prepared using photoelectrochemically etched silicon as a microstructured scaffold. Ordered two-dimensional macroporous silicon structures were rendered proton conducting by filling the micropores via a surface-initiated atom transfer radical polymerization process. The morphological aspects, chemical stability, and performance of the hybrid assemblies were characterized by a set of techniques including scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, nuclear magnetic resonance and impedance spectroscopy, among others. The fabricated silicon-poly(sodium 2-acrylamide-2-methylpropane sulfonate) hybrid membranes displayed proton conductivities in the range of 1x10(-2) S/cm. This work illustrates the potential of hybrid polymer-silicon composite membranes synthesized by pore-filling surface-initiated polymerization to create proton conducting platforms in a simple and straightforward manner. Versatility and relative ease of preparation are two key aspects that make this approach an attractive alternative for the molecular design and preparation of proton conducting systems.


Assuntos
Acrilamidas/química , Alcanossulfonatos/química , Membranas Artificiais , Polímeros/química , Silício/química , Porosidade
17.
Macromol Rapid Commun ; 31(17): 1501-8, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21567558

RESUMO

The synthesis of a novel and multifunctional copolymer based on a human serum albumin backbone bearing several folic acid as well as PEO groups was presented. In solution, this side-chain copolymer adopts a globular architecture and about five molecules of the water-insoluble chromophore PDI were successfully incorporated into these micelles for receptor-mediated cell uptake investigations. A significant uptake of these bioconjugates via receptor-mediated endocytosis was detected for cells expressing folic acid receptors in the cell membrane. These novel albumin-based copolymers could serve as efficient and biocompatible carrier systems facilitating the directed delivery of lipophilic drug molecules into cancer cells and they allow investigating vesicle formation and trafficking even at the single molecule level.

19.
Langmuir ; 20(21): 9114-23, 2004 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-15461495

RESUMO

The influence of various experimental parameters on the vertical deposition and structure formation of colloidal crystals on chemically patterned surfaces, with hydrophilic and hydrophobic areas, was investigated. The pattern dimensions range from about 4 to 400 microm, which is much larger than the individual particle size (255 nm), to control the microscopic crystal shape rather than influencing the crystal lattice geometry (as achieved in colloidal epitaxy). The deposition resolution and selectivity were tested by varying the particle concentration in the suspension, the substrate withdrawing speed, pattern size and orientation, and wetting contrast between the hydrophilic and hydrophobic regions. The evolution of colloidal crystal thickness with respect to the pattern dimensions and deposition parameters was further studied. Our results show that the pattern size has a rather strong influence on the deposited number of colloid layers and on the crystal quality. Better results are obtained when the lines of a stripe pattern are oriented parallel to the withdrawing direction rather than perpendicular. The deposition resolution (defined as the minimum feature size on which particles can be deposited) depends on the wetting contrast and increases with lower average hydrophobicity of the substrate.


Assuntos
Coloides/química , Membranas Artificiais , Cristalização , Interações Hidrofóbicas e Hidrofílicas , Microesferas , Tamanho da Partícula , Propriedades de Superfície
20.
Proc Natl Acad Sci U S A ; 99(8): 5034-9, 2002 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-11959954

RESUMO

The site-selective assembly of colloidal polymer particles onto laterally patterned silane layers was studied as a model system for the object assembly process at mesoscale dimensions. The structured silane monolayers on silicon oxide substrates were fabricated by a combination of liquid- and gas-phase deposition of different trialkoxysilanes with a photolithographic patterning technique. By using this method various types of surface functionalizations such as regions with amino functions next to areas of the bare silica surface or positively charged regions of a quaternary ammonium silane surrounded by a hydrophobic octadecylsilane film could be obtained. Furthermore, a triethoxysilane with a photoprotected amino group was synthesized, which allowed direct photopatterning after monolayer preparation, leading to free NH(2) groups at the irradiated regions. The different silane monolayer patterns were used to study the surface assembly behavior of carboxylated methacrylate particles by optical and scanning electron microscopy. In dependence of the assembly conditions (different surface functionalizations, pH, and drying conditions), a selective preference of the particles for a specific surface type versus others was found. Site-specific colloid adsorption could be observed also on the photosensitive silane layers after local deprotection with light. From the photosensitive silane and positively charged ammonium silane, molecularly mixed monolayers were prepared, which allowed particle adsorption and photoactivation within the same monolayer as shown by fluorescence labeling.


Assuntos
Coloides/química , Silanos/química , Ácidos Carboxílicos/química , Concentração de Íons de Hidrogênio , Luz , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Modelos Químicos , Óxidos/química , Ácidos Polimetacrílicos/química , Compostos de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...